
Notebook: Managed Services
Created: 12/20/2017 11:01 AM Updated: 12/20/2017 2:24 PM
Author: tuan.hoang@episerver.com
T ags: Regex
URL: https://regex101.com/

Basic Regex patterns

Basic Regex patterns
- Regex online-testing tool: https://regex101.com/

- References:
http://www.rexegg.com/
http://www.rexegg.com/regex-quickstart.html
http://www.zytrax.com/tech/web/regex.htm
https://www.cheatography.com/davechild/cheat-sheets/regular-
expressions/

Note: Some regex patterns may not work in all environments

A. Basic Patterns
+) Word boundary match
Pattern: \b

+) Non-word boundary match
Pattern: \B



+) Word character match
Pattern: \w

+) Non-word character match => matches any non-word
character (equal to [^a-zA-Z0-9_])
Pattern: \W

+) Digit match
Pattern: \d

+) Non-digit match
Pattern: \D

+) White-space match
Pattern: \s



+) Non-whitespace match
Pattern: \S

+) Quantifiers

+) Groups and ranges



+) Anchors



+) Modifiers



B. Advanced Patterns

1. Named capturing group

Pattern: Hoang (?<name>Tuan) \k<name>
Matched string: Hoang Tuan Tuan
Explain: This pattern will capture the string inside (?<name>...) and
hold it in the "name" for back-reference. Later, we can reference to
it by \k<name> 

2. No-name capturing group

Pattern: (Hoang) (Tuan) \2 \1
Matched string: Hoang Tuan Tuan Hoang
Explain: First group is referenced as \1, and so on

3. Non-capturing group

Pattern: Hoang (?:Tuan)
Matched string: Hoang Tuan
You cannot back-reference the grouped string

4. Positive Lookahead

Pattern: Hoang(?=Tuan)



This pattern will match the string "Hoang" in "HoangTuan" but does
not match the string "Hoang" in "HoangHa" & "TuanHoang"
Explain: When found "Hoang", it will look ahead to see if the string
"Tuan" exist or not. If "Tuan" exists ahead of "Hoang", it will match
"Hoang"

5. Negative Lookahead

Pattern: Hoang(?!Tuan)
This pattern will match the string "Hoang" in "HoangHa" but does
not match the string "Hoang" in "HoangTuan" & "TuanHoang"
Explain: When found "Hoang", it will look ahead to see if the string
"Tuan" exist or not. If "Tuan" DOES NOT exist ahead of "Hoang", it
will match "Hoang"

6. Positive Lookbehind

Pattern: (?<=Tuan)Hoang
This pattern will match the string "Hoang" in "TuanHoang" but does
not match the string "Hoang" in "HaHoang" & "HoangTuan"
Explain: When found "Hoang", it will look behind to see if the string
"Tuan" exist or not. If "Tuan" exists behind of "Hoang", it will match
"Hoang"



7. Positive Lookbehind

Pattern: (?<!Tuan)Hoang
This pattern will match the string "Hoang" in "HaHoang" but does
not match the string "Hoang" in "TuanHoang" & "HoangTuan"
Explain: When found "Hoang", it will look behind to see if the string
"Tuan" exist or not. If "Tuan" DOES NOT exist behind of "Hoang", it
will match "Hoang"

8. Greedy & Lazy quantifiers

By default, all quantifiers are greedy, they will try to match as much as
possible

To make a quantifier to be lazy (i.e match as few as possible), put ? next
to the quantifier

Example:
Greedy version (.+)

Lazy version (.+)




